The following statements are equivalent.

1. $\vec{\mathbf{F}} = \langle F_1, F_2 \rangle$ is a conservative vector field.

2. Line integrals of $\vec{\mathbf{F}}$ are *path independent*. If **A** and **B** are any two points and C_1 and C_2 are two different paths connecting **A** to **B** then $\int_{C_1} \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \int_{C_2} \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$

- **3.** $\oint_C \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}} = 0$ for every closed loop C
- 4. $\frac{\partial F_2}{\partial x} \frac{\partial F_1}{\partial y} = 0$ at all points
- **5.** $\vec{\mathbf{F}} = \nabla \phi$ for some scalar valued function $\phi = \phi(x, y)$

The following statements are equivalent.

1. $\vec{\mathbf{F}} = \langle F_1, F_2, F_3 \rangle$ is a conservative vector field.

2. Line integrals of $\vec{\mathbf{F}}$ are *path independent*. If **A** and **B** are any two points and C_1 and C_2 are two different paths connecting **A** to **B** then $\int_{C_1} \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}} = \int_{C_2} \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}}$

- **3.** $\oint_C \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}} = 0$ for every closed loop C
- 4. $\nabla \times \vec{\mathbf{F}} = \vec{\mathbf{0}}$ at all points
- **5.** $\vec{\mathbf{F}} = \nabla \phi$ for some scalar valued function $\phi = \phi(x, y, z)$