Applications of Complex Variables to Fluid Flow

Let V denote the velocity vector field of a fluid in two dimensions

V ={(p, q)  wherep=p(z,y) and ¢ = ¢(z,y)

Note that if we write this in complex number notation, then V = p + iq.

The fluid is incompressible if V ¢ V = 0 which implies:
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When will this happen? It will certainly be true if we can find a function ¢ = ¢(z,y) with
the property:
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The function 1 is called the stream function and it is related to the flow lines (or stream-

lines) that we calculated at the beginning of the course. To see this, first note that the
velocity vector field is perpendicular to the gradient of the stream function:
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We also know that V1) is perpendicular to its level sets. That means that Vi is perpen-
dicular to curves of the form ¢ (x,y) = C. If V¢ is perpendicular to ¢ (z,y) = C and V
is perpendicular to Vi then V is tangent to curves of the form ¢ (z,y) = C which means
that the curves ¢ (z,y) = C are the flowlines.
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Next, let us suppose that the fluid flow is irrotational. This means that V x V = 0 which

implies that:
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If VXV =0 then V is a conservative vector field and therefore must be the gradient of

a potential function ¢(x,y)
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Comparing coordinates, we also see that p = g—¢ and ¢ = %. Since V = V¢ is perpendic-
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ular to Ve and V¢ is perpendicular to its level sets ¢(x,y) = C, it must be the case that

the equipotential curves ¢(x,y) = C must be perpendicular to the streamlines ¥ (x,y) = C.

Now, switch to complex variable notation. V = p 4 ig. Define the function f(z) as:

f(z) =9+

There is an interesting relationship between f(z) and V. First of all, notice that the real
and imaginary parts of f(z) satisfy the Cauchy-Riemann equations:
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Therefore, f(z) is an analytic function and it’s derivative is given by:
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If we compare this to the velocity vector field V = p 4 iq we see that V is the complex
conjugate of f’(z)

V=f(z)



