
52. z = 10 - x2 - y2, z = 1 

53. z = x2 + y2, x2 + y2 = 25, z = 0 

54. y = x2 + z2, 2y = x2 + z2 + 4 

55. Find the centroid of the homogeneous solid that is bounded 

by the hemisphere z = V a2 - x2 - y2 and the plane z = 0. 

56. Find the center of mass of the solid that is bounded by the 
graphs of y2 + z2 = 16, x = 0, and x = 5 if the density at a 
point Pis directly proportional to distance from the y z-plane. 

57. Find the moment of inertia about the z-axis of the solid that 

is bounded above by the hemisphere z = V9 - x2 - y2 

and below by the plane z = 2 if the density at a point P is 
inversely proportional to the square of the distance from the 
z-axis. 

58. Find the moment of inertia about the x-axis of the solid that 

is bounded by the cone z = V x2 - y2 and the plane z = 1 if 
the density at a point P is directly proportional to the distance 
from the z-axis. 

In Problems 59-62, convert the point given in spherical 
coordinates to (a) rectangular coordinates and (b) cylindrical 
coordinates. 

59. G· �· �)
61. (8, ;. 3;) 

&O. (
5, 

5;
. 

2;) 

62. G· 5;. �) 
In Problems 63-66, convert the points given in rectangular coor­
dinates to spherical coordinates. 

63. (-5, -5, 0) 64. (1, -v'3, 1) 

65. (�. �· 1) 66. (-v'3 
0 _!) 

2 ' ' 2 
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In Problems 67-70, convert the given equation to spherical 
coordinates. 

67. x2 + y2 + z2 = 64 

69. z2 = 3x2 + 3y2 
68. x2 + y2 + z2 = 4z 

70. -x2 - y2 + z2 = 1 

In Problems 71-74, convert the given equation to rectangular 
coordinates. 

71. p = 1 0 72. <P = 7T/3 

73. p = 2 sec</J 74. p sin2 <P = cos <P 

In Problems 75-82, use triple integrals and spherical 
coordinates. In Problems 75-78, find the volume of the solid 
that is bounded by the graphs of the given equations. 

75. z = V x2 + y2, x2 + y2 + z2 = 9 

76. x2 + y2 + z2 = 4, y = x, y = \/3 x, z = 0, first octant 
77. z2 = 3x2 + 3y2, x = 0, y = 0, z = 2, first octant 
78. Inside x2 + y2 + z2 = 1 and outside z2 = x2 + y2 

79. Find the centroid of the homogeneous solid that is bounded 

by the cone z = V x2 + y2 and the sphere x2 + y2 + z2 = 2z. 
80. Find the center of mass of the solid that is bounded by the 

hemisphere z = V 1 - x2 - y2 and the plane z = 0 if the 
density at a point P is directly proportional to the distance 
from the xy-plane. 

81. Find the mass of the solid that is bounded above by the hemi-

sphere z = V 25 - x2 - y2 and below by the plane z = 4 if 
the density at a point Pis inversely proportional to the distance 
from the origin. [Hint: Express the upper <P limit of integration 
as an inverse cosine.] 

82. Find the moment of inertia about the z-axis of the solid that 
is bounded by the sphere x 2 + y2 + z2 = a2 if the density at a 
point Pis directly proportional to the distance from the origin. 

= Introduction In Section 9.14 we saw that Stokes' theorem was a three-dimensional 
generalization of a vector form of Green's theorem. In this section we present a second vector 
form of Green's theorem and its three-dimensional analogue. 

D Another Vector Form of Green's Theorem Let F (x,y) = P(x,y)i + Q(x,y)j be 
a two-dimensional vector field, and let T = ( dx/ ds) i + ( dy/ ds) j be a unit tangent to a simple 
closed plane curve C. In (1) of Section 9.14 we saw that i (F · T) ds can be evaluated by a 
double integral involving curl F. Similarly, if n = (dy/ds) i - (dx/ds)j is a unit normal to C 
(check T · n), then �c (F · n) ds can be expressed in terms of a double integral of div F. From 
Green's theorem, 

that is, i (F · n) ds = II div F dA. (1) 

R 
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The result in (1) is a special case of the divergence or Gauss, theorem. The following is a 
generali7.ation of (1) to 3-space: 

Tbaorem 9.16.1 Divergence Theorem 

Let D be a closed and bounded region in 3-space with a piecewis�smooth boundary S that is 
oriented outward. Let F(x, y, z) = P(x, y, z)i + Q(x, y, z) j + R(x, y, z)k be a vector field for 
which P, Q, and Rare continuous and have continuous first partial derivatives in a region of 
3-space containing D. Then 

ff (F·n)dS = Jff divFdV. 
s D 

(2) 

PARTIAL PROOF: We will prove (2) for the special region D shown in RGURE 9.16.1 whose 
surface S consists of three pieces: 

(bottom) S1: z = ft(x, y), (x, y) in R 

(top) S2: z 
= f2(x, y), (x, y) in R 

(side) S3:/1(x, y) s z Sh.(x, y), (x, y) on C, 

where R is the projection of D onto the xy-plane and C is the boundary of R. Since 

div F = 
iJP 

+ 
iJQ 

+ 
itR 

and F . D = P(i • D) + Q(j . D) + R(k. • n), 
ax ay oz 

we can write 

and 

Jf (F · n)dS = Jf P(i • n)dS + ff Q(j · n)dS + JJ R(k · n)dS

s s s s 

f Jf div F dV = ff J �: dV + Jf f : dV + Jf f �� dV. 
D D D D 

To prove (2) we need only establish that 

s D 

(3) 

(4) 

(5) 

Indeed, we shall prove only (5), since the proofs of (3) and (4) follow in a similar manner. Now, 

f Jf �� dV = ff [£:::> :: dz] dA = ff [R(x, y,f2(x, y)) - R(x, y,ft(x, y))] dA. (6)
D R R 
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Next we write 

f J R(k · n) dS = ff R(k · n) dS + JJ R(k • n) dS + JJ R(k · n) dS. 
s � � s, 

On S1: Since the outward normal points downward, we describe the surface as g(x. y. z) = 

fi(x, y) - z = 0. Thus. 

-1 
sothat k·n = . 

�1 + (!)2 + (:J 
From the definition of dS we then have 

JJ R(k · n) dS = - Jf R(x, y,Ji(x, y)) dA. 
Si R 

On S2: The outward normal points upward, so 

from which we find 

ff R(k. D) dS = f J R(x, y, fz(X, y)) dA. 
S,. R 

On S3: Since this side is vertical, k is perpendicular ton. Consequently, k • n = 0 and 

ff R(k·n) dS = 0. 

s, 

Finally. adding (7), (8), and (9), we get 

ff [R(x,y,h.(x,y)) - R(x,y,fi(x,y))] dA, 
R 

which is the same u (6). 

m 

(8} 

(9} 

Although we proved (2) for a special region D that has a vertical side, we note that this type 
of region is not required in Theorem 9.16.1. A region D with no vertical side is illustrated in 
RGURE 9.16.2; a region bounded by a sphere or an ellipsoid also does not have a vertical side. The 
divergence theorem also holds for the region D bounded between two closed surfaces. such as 
the concentric spheres S" and S" shown in FIGURE9.16.3; the boundary surface S of Dis the union 
of SaandS1» In this caseffs(F • n)dS = fffndivF dVbecomes 
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where n points outward from D; that is, n points away from the origin on Sb and n points toward 
the origin on Sa. 

EXAMPLE 1 Verifying Divergence Theorem 
Let D be the region bounded by the hemisphere x2 + y2 + (z - 1)2 = 9, 1 :5 z :5 4, and the 
planez = 1. Verifythe divergencetheorem ifF =xi+ yj + (z - l)k. 

SOLUTION The closed region is shown in FIGURE 9.16.4. 

Triple Integral: Since F =xi+ yj + (z - l )k, we see div F = 3 .  Hence, 

III div F dV = III 3 dV = 3 III dV = 541T. 
D D D 

(10) 

In the last calculation, we used the fact that ff f v dV gives the volume of the hemisphere (�1T33) . 

Surface Integral: We write ff s = f h + ff s,. where S1 is the hemisphere and S2 is the plane 
z = 1. If S1 is a level surface of g(x , y ,  z )  = x2 + y2 + (z - 1)2, then a unit outer normal is 

Now 

and so 

Vg xi + yj + (z - l)k x. y • z - 1 
n = 

llVgll 
= 

Vx2 + y2 + (z - 1)2 
= 31 + 3J + -3

-k. 

x2 y2 (z - 1)2 1 1 F · n = - + -+ = -(x2 + y2 + (z - 1)2) = -· 9 = 3 
3 3 3 3 3 

l
21T
l

3 
= 9 0 0 (9 - r2)-112r d r d() = 541T. +--polar coordinates 

OnS2,we taken= -k so thatF·n= -z+ 1.But,sincez = l ,ffs2(-z+ l )dS =O. 
Hence, we see that ff s (F · n) dS = 541T + 0 = 541T agrees with (10) . 

EXAMPLE2 Using Divergence Theorem 
IfF = xy i + y2zj + z3 k, evaluate ff s(F · n) dS , where S is the unit cube defined by 0 :5 x :5 1, 
0 :5 y :5 1, 0 :5 z :5 1. 

SOLUTION See Figure 9.13 .14 and Problem 38 in Exercises 9.13 . Rather than evaluate six 
surface integrals, we apply the divergence theorem. Since div F = V · F = y + 2yz + 3z2, 
we have from (2) 

II (F · n) dS = III ( y  + 2yz + 3z2) dV 
S D 
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= f ( � + y2z + 3yz 2) I dz

= f (� + z + 3z 2) dz = (� z + � z 2 + z 3) I = 2. 

D Physical Interpretation of Divergence In Section 9.14 we saw that we could
express the normal component of the curl of a vector field F at a point as a limit involving the 

n x circulation of F. In view of (2), it is possible to interpret the divergence of F at a point as a limit 
involving the flux ofF. Recall from Section 9.7 that the flux of the velocity field F of a fluid is 
the rate of fluid flow-that is, the volume of fluid flowing through a surface per unit time. In 
Section 9. 7 we saw that the divergence of F is the flux per unit volume. To reinforce this last idea 
let us suppose P 0(x0, y 0, z 0) is any point in the fluid and S, is a small sphere of radius r centered 
at P0. See FIGURE 9.16.5. If D, is the sphere S, and its interior, then the divergence theorem gives FIGURE 9.16.5 Region D, in (11)

ff (F · n) dS = ff div F dV.

s, 

(11) 

If we take the approximation div F(P) =div F(P0) at all points P(x, y, z) within the small sphere, 
then (11) gives 

ff (F · n) dS = ff I div F(P0) dV

s, 

div F(P0) ff I dV

div F(P0)V,, 

(12) 

where V, is the volume ( �1Tr3) of the spherical region Dr By letting r � 0, we see from (12) 
that the divergence of F is the limiting value of the ratio of the flux of F to the volume of the 
spherical region: 

div F(P0) = lim _!__ JJ (F · n) dS . 
r�O V, 

s, 

Hence, divergence F is flux per unit volume. 
The divergence theorem is extremely useful in the derivation of some of the famous equations 

in electricity and magnetism and hydrodynamics. In the discussion that follows we shall consider 
an example from the study of fluids. 

D Continuity Equation At the end of Section 9.7 we mentioned that one interpretation
of div F was a measure of the rate of change of the density of a fluid at a point. To see why 
this is so, let us suppose that F is a velocity field of a fluid and that p(x, y, z, t) is the density 
of the fluid at a point P(x, y, z) at a time t. Let D be the closed region consisting of a sphere S 
and its interior. We know from Section 9.15 that the total mass m of the fluid in Dis given by 
m = ff f v p(x, y, z, t) dV. The rate at which the mass increases in Dis given by 

�� = ! ff I p(x, y, z, t) dV = f ff : dV. (13) 
D D 

Now from Figure 9. 7 .3 we saw that the volume of fluid flowing through an element of surface 
area !:l.S per unit time is approximated by (F · n) !:l. S. The mass of the fluid flowing through an 
element of surface area !:l. S per unit time is then ( p F · n) !:l. S. If we assume that the change in 
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mass in D is due only to the flow in and out of D, then the volume of fluid flowing out of D per 
unit time is given by (10) of Section 9.13, Ifs ( F · n) dS, whereas the mass of the fluid flowing 
out of D per unit time is ff s ( p  F · n) dS. Hence, an alternative expression for the rate at which
the mass increases in D is 

- II (pF · n) dS.

s 

By the divergence theorem, (14) is the same as 

Equating (13) and (15) then yields 

- III div(pF) dV.

D 

III : dV = - III div(pF) dV or III (: + div( pF)) dV = O.
D D D 

(14) 

(15) 

Since this last result is to hold for every sphere, we obtain the equation of continuity for fluid 
flows: 

ap 
- + div(pF) = 0. 
at 

(16) 

On page 499 we stated that if div F = V · F = 0, then a fluid is incompressible. This fact 
follows immediately from (16). If a fluid is incompressible (such as water), then pis constant, 
so consequently V · ( p F) = pV · F. But in addition ap/iJt = 0 and so (16) implies V · F = 0 . 

.,......,.1111 Exercises Answers to selected odd-numbered problems begin on page ANS-24.

In Problems 1 and 2, verify the divergence theorem. 
1. F = xy i  + yz j + xzk; D the region bounded by the unit cube 

defined by 0 :5 x :5 1, 0 :5 y :5 1, 0 :5 z :5 1 
2. F = 6.xyi + 4yzj + xe-Yk; D the region bounded by the three 

coordinate planes and the plane x + y + z = 1 

In Problems 3-14, use the divergence theorem to find the 
outward flux ff s (F · n) dS of the given vector field F. 

3. F = x3i + y 3j + z3k; D the region bounded by the sphere 
x2 + y2 + z2 = az 

4. F = 4xi + yj + 4zk; D the region bounded by the sphere 
x2 + Y2 + z2 = 4 

5. F = y2i + xz3j + (z - 1)2 k; D the region bounded by the 
cylinder x2 + y2 = 16 and the planes z = 1, z = 5 

6. F = x2i + 2yzj + 4z3k; D the region bounded by the paral­
lelepiped defined by 0 :5 x :5 1, 0 :5 y :5 2, 0 :5 z :5 3 

7. F = y3i + x3j + z3k; D the region bounded within by 
z = V4 - x2 - y2,x2 + y2 = 3,z = 0 

8. F = (x2 + sin y) i + z2j + xy3k; D the region bounded by 
y = x2, z = 9 - y, z = 0 

9. F =(xi+ yj + z k)l(x2 + y2 + z2);Dthe region bounded by 
the concentric spheres x2 + y2 + z2 = a2, x2 + y2 + z2 = b2, 
b>a 
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10. F = 2yzi + x3j + xy2k; D the region bounded by the ellipsoid 
x2/a 2 + y2tb 2 + z2/c2 = 1 

11. F = 2xzi + 5y2j - z2k; D the region bounded by z = y, 
z = 4 - y, z = 2 - !x2,x = 0, z = 0. See FIGURE9.16.6. 

z 

y 

x 
z=2- -!- x2 

FIGURE 9.16.6 Region D for Problem 11 

12. F = 15x2yi + x2zj + y4k;Dthe region bounded by x + y = 2, 
z = x + y, z = 3, x = 0, y = 0 

13. F = 3x2y2i + y j  - 6zxy2k; D the region bounded by the 
paraboloid z = x2 + y2 and the plane z = 2y

14. F = xy2i + x2yj + 6 sin xk; D the region bounded by the 
cone z = Vx2 + y2 and the planes z = 2, z = 4



15. The electric field at a point P(x, y, z) due to a point charge q 
located at the origin is given by the inverse square field 

r 

E 
= q 

llrll3' 

where r = x i + yj + zk. 
(a) SupposeSisa closed surface,Sa isa sphere x 2  + y2 + z2 = a2 

lying completely within S, and D is the region bounded 
between S and Sa. See FIGURE 9.16.7. Show that the outward 
flux of E for the region D is zero. 

(b) Use the result of part (a ) to prove Gauss' law: 

ff (E · n) dS = 47Tq; 
s 

that is, the outward flux of the electric field E through 
any closed surface (for which the divergence theorem
applies) containing the origin is 47Tq. 

zl 

/,/ 

I 
I 
I Sa 
I J.---------Y 

D 
s 

FIGURE 9.16.7 Region D for Problem 15(a) 

16. Suppose there is a continuous distribution of charge through­
out a closed and bounded region D enclosed by a surface S. 
Then the natural extension of Gauss' law is given by 

ff (E · n) dS = f ff 47Tp dV,

S D 

where p(x, y, z) is the charge density or charge per unit 
volume. 
(a) Proceed as in the derivation of the continuity equation 

(16) to show that div E = 47Tp. 
(b) Given that E is an irrotational vector field, show that the 

potential </>for E satisfies Poisson's equation V 2</> = 47Tp. 

In Problems 17-21, assume that S forms the boundary of a 
closed and bounded region D. 
17. If a is a constant vector, show that ff s (a · n) dS = 0.
18. IfF =Pi+ Qj + Rk andP, Q,andRhave continuous second 

partial derivatives, prove that 

ff (curl F · n) dS = 0.
s 

In Problems 19 and 20, assume thatf and g are scalar functions 
with continuous second partial derivatives. Use the divergence 
theorem to establish Green's identities. 

19. ff (JVg) · n dS = fff (JV2g + VJ· Vg) dV

S D 

20. ff (JV g - gVJ) · n dS = f ff (JV2g - gV2f) dV 

S D 
21. If f is a scalar function with continuous first partial derivatives, 

prove that 

ff Jn dS = f ff VjdV.
s D 

[Hint. Use (2) on fa, where a is a constant vector, and Problem 27 
in Exercises 9. 7.] 

22. The buoyancy force on a floating object is B = -ff s p n dS,
where p is the fluid pressure. The pressure p is related to
the density of the fluid p (x, y, z) by a law of hydrostatics: 
Vp = p (x,y,z)g, whereg is the constant acceleration of grav­
ity. If the weight of the object is W = mg, use the result of 
Problem 21 to prove Archimedes' principle, B + W = 0. See 
FIGURE 9.16.8. 

I I 
\ w I 
I I \ I 

' ............. __ _.,// ---------

FIGURE 9.16.8 Floating object in Problem 22 

I 9.17 Change of Variables in Multiple Integrals 

= Introduction In many instances it is either a matter of convenience or of necessity to 
make a substitution, or change of variable, in a definite integral I: f(x) dx in order to evaluate it. 
Iffis continuous on [a, b], x = g (u) has a continuous derivative, and dx = g'(u) du, then 

r f(x) dx = rf(g(u)) g'(u) du, (1) 
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If the function g is one-to-one, 
then it has an inverse and so 
c = g-1(a) and d = g-1(b). 

(a) Region R in xy-plane 

8 

n:12 --8-­
n:14---
--+---+---+--+-- r 

0 -vs 

(b) Region Sin r8-plane 

FIGURE 9.17.1 Region Sis used to 
evaluate (6) 

v 

� where the u-limits of integration c and d are defined by a= g(c) and b = g(d). There are three 
things that bear emphasizing in (1). To change the variable in a definite integral we replace x 
where it appears in the integrand by g( u ), we change the interval of integration [a, b] on the x-axis 
to the corresponding interval [ c, d] on the u-axis, and we replace dx by a function multiple (namely, 
the derivative of g) of du. If we write J(u) = dxldu, then (1) has the form 

r f(x) dx = r f(g(u))J(u) du. 

For example, using x = 2 sin 8, -'TT/2 ::5 8 ::5 7T/2, we get 

x-limits 8-limits 
..j, f(x) ..j, /(2sin8) 1(8)

(2 � (1T/2 ,-A, ,-A, (1T/2 
Jo �dx = Jo 2 cos 8 (2 cos 8) d8 = 4J0 cos2 8 d8 ='TT. 

(2) 

D Double Integrals Although changing variables in a multiple integral is not as straight­
forward as the procedure in (1), the basic idea illustrated in (2) carries over. To change variables 
in a double integral we need two equations such as 

x = f(u, v), y = g(u, v). (3) 
To be analogous with (2), we expect that a change of variables in a double integral would take 
the form 

II F( x, y) dA = II F(f(u, v), g(u, v))J(u, v) dA', (4) 
R s 

where S is the region in the uv-plane corresponding to the region R in the xy-plane and J(u, v) is 
some function that depends on the partial derivatives of the equations in (3). The symbol dA' on
the right side of (4) represents either du dv or dv du. 

In Section 9 .11 we briefly discussed how to change a double integral ff R F(x, y) dA from
rectangular coordinates to polar coordinates. Recall that in Example 2 of that section the 
substitutions 

led to 

x = rcos 8, y = rsin 8 

i
2
i� 

1 11T/2
iv'8 1

2 2 dydx= --2 rdrd8. 0 x 5 + x + y 17;4 0 5 + r 

(5) 

(6) 

As we see in FIGURE 9.17.1, the introduction of polar coordinates changes the original region 
of integration R in the xy-plane to the more convenient rectangular region of integration S in 

--+---...... o-t---u the r8-plane. We note, too, that by comparing (4) with (6), we can identify J(r, 8) = rand 

(a) 

y (4, 4) 

x=4 

(1,1) y=l (4,1) 
--+---+---+---+---+-x 

(b) 

FIGURE 9.17.2 Region R is the image of
region S in Example 1 
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dA' = drd8. 
The change-of-variable equations in (3) define a transformation or mapping T from the 

uv-plane to thexy-plane. A point (x0, y0) in thexy-plane determined from x0 = f(u0, v0), Yo = g(u0, v0)
is said to be an image of (u0, v0). 

EXAMPLE 1 Image of a Region

Find the image of the region S shown in FIGURE9.17.2(a) under the transformation x = u2 + v2, 
y = u2 - v2. 
SOLUTION We begin by finding the images of the sides of S that we have indicated by Si. 

S2, andS3• 
S1: On this side v = 0 so that x = u2, y = u2• Eliminating u then gives y = x. Now 
imagine moving along the boundary from (1, 0) to (2, 0) (that is, 1 ::5 u ::5 2). The 
equations x = u2, y = u2 then indicate that x ranges from x = 1 to x = 4 and y ranges 
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