$\vec{\mathbf{F}}$ represents flow through a solid. Divide the solid into two compartments.

$$\Phi_S = \iint_S \vec{\mathbf{F}} \bullet \vec{\mathbf{n}} \, dS$$

Ants enter Room 2 through Door 3 at 4 ants/sec Ants are passing through Door 2 into Room 1 at 2 ants/sec Ants are leaving through Door 1 at 1 ant/sec

Therefore, the ant flux is -3 ants/sec

Camera in Room 1 shows an ant flux of -1

Flux out of Room
$$1 = -2 + 1 = -1$$

Camera in Room 2 shows an ant flux of -2

Flux out of Room
$$2 = -4 + 2 = -2$$

Flux (Room 1) + Flux (Room 2) =
$$(-2+1) + (-4+2) = -3$$

Back to general vector fields

Each compartment has six faces.

first compartment: S_{11} , S_{12} , S_{13} , S_{14} , S_{15} and S_{16}

second compartment: S_{21} , S_{22} , S_{23} , S_{24} , S_{25} and S_{26} .

$$S_{16} = S_{26}$$

The total flux out of the first compartment is:

$$\Phi_{S_{11}} + \Phi_{S_{12}} + \Phi_{S_{13}} + \Phi_{S_{14}} + \Phi_{S_{15}} + \Phi_{S_{16}} = \sum_{j=1}^{6} \Phi_{S_{1j}}$$

and the total flux out of the second compartment is:

$$\Phi_{S_{21}} + \Phi_{S_{22}} + \Phi_{S_{23}} + \Phi_{S_{24}} + \Phi_{S_{25}} + \Phi_{S_{26}} = \sum_{j=1}^{6} \Phi_{S_{2j}}$$

$$\begin{split} \vec{\mathbf{n}}_{26} &= -\vec{\mathbf{n}}_{16} \\ \int_{S_{16}} \vec{\mathbf{F}} \bullet \vec{\mathbf{n}}_{16} \, dS &= \int_{S_{16}} \vec{\mathbf{F}} \bullet (-\vec{\mathbf{n}}_{26}) \, dS = -\int_{S_{26}} \vec{\mathbf{F}} \bullet \vec{\mathbf{n}}_{26} \, ds \\ \Phi_{S_{16}} &= -\Phi_{S_{26}} \end{split}$$

$$\sum_{j=1}^{6} \Phi_{S_{1j}} + \sum_{j=1}^{6} \Phi_{S_{2j}}$$

$$= \left(\sum_{j=1}^{5} \Phi_{S_{1j}} + \Phi_{S_{16}}\right) + \left(\sum_{j=1}^{5} \Phi_{S_{2j}} + \Phi_{S_{26}}\right)$$

$$= \left(\sum_{j=1}^{5} \Phi_{S_{1j}} - \Phi_{S_{26}}\right) + \left(\sum_{j=1}^{5} \Phi_{S_{2j}} + \Phi_{S_{26}}\right)$$

$$= \sum_{j=1}^{2} \sum_{j=1}^{5} \Phi_{S_{ij}}$$

$$\sum_{i=1}^{2} \sum_{j=1}^{6} \Phi_{S_{ij}} = \sum_{\text{exterior faces}} \Phi_{S_{ij}} = \iint_{S} \vec{\mathbf{F}} \bullet \vec{\mathbf{n}} \, dS$$

where S is the entire surface surrounding the two combined compartments.

Generalize to more interior compartments.

$$\sum_{i=1}^{8} \sum_{j=1}^{6} \Phi_{S_{ij}} = \iint_{S} \vec{\mathbf{F}} \cdot \vec{\mathbf{n}} \, dS$$

n compartments.

$$\sum_{i=1}^{n} \sum_{j=1}^{6} \Phi_{S_{ij}} = \iint_{S} \vec{\mathbf{F}} \cdot \vec{\mathbf{n}} \, dS$$

Divergence $\nabla \bullet \vec{\mathbf{F}}$ is the flux per unit volume as the volume shrinks to 0.

$$\sum_{j=1}^{6} \Phi_{S_{ij}} \approx \nabla \bullet \vec{\mathbf{F}} \operatorname{vol}(V_i)$$

where V_i is the interior of the i^{th} compartment.

Divergence $\nabla \bullet \vec{\mathbf{F}}$ is the flux per unit volume as the volume shrinks to 0.

$$\sum_{j=1}^{6} \Phi_{S_{ij}} \approx \nabla \bullet \vec{\mathbf{F}} \operatorname{vol}(V_i)$$

where V_i is the interior of the i^{th} compartment.

$$\sum_{i=1}^{n} \nabla \bullet \vec{\mathbf{F}} \operatorname{vol}(V_{i}) \approx \sum_{i=1}^{n} \sum_{j=1}^{6} \Phi_{S_{ij}} = \iint_{S} \vec{\mathbf{F}} \bullet \vec{\mathbf{n}} dS$$

$$\lim_{n \to \infty} \sum_{i=1}^{n} \nabla \bullet \vec{\mathbf{F}} \operatorname{vol}(V_{i}) = \iint_{S} \vec{\mathbf{F}} \bullet \vec{\mathbf{n}} dS$$
$$\iiint_{V} \nabla \bullet \vec{\mathbf{F}} dV = \iint_{S} \vec{\mathbf{F}} \bullet \vec{\mathbf{n}} dS$$

Divergence Theorem.

We could have used solids with different shapes.

Example: Let $\vec{\mathbf{F}} = \langle x, y, 0 \rangle$, let S be the surface surrounding the cylinder V described by the inequalities: $x^2 + y^2 \leq 4$ and $0 \leq z \leq 5$.

$$\iint_{S} \vec{\mathbf{F}} \bullet \vec{\mathbf{n}} \, dS = \iiint_{V} \operatorname{div} \vec{\mathbf{F}} \, dV$$

Let's try this and compare. Let T denote the top of the cylinder and let B denote the bottom of the cylinder. $\iint_S \vec{\mathbf{F}} \cdot \vec{\mathbf{n}} \, dS \text{ is the same as:}$

$$\iint_{T} \vec{\mathbf{F}} \bullet \vec{\mathbf{n}} \, dS + \iint_{B} \vec{\mathbf{F}} \bullet \vec{\mathbf{n}} \, dS + \iint_{\text{Side}} \vec{\mathbf{F}} \bullet \vec{\mathbf{n}} \, dS$$

However,

$$\iint_{T} \vec{\mathbf{F}} \bullet \vec{\mathbf{n}} \, dS = \iint_{T} \langle x, y, 0 \rangle \bullet \langle 0, 0, 1 \rangle \, dS = 0$$

$$\iint_{B} \vec{\mathbf{F}} \bullet \vec{\mathbf{n}} \, dS = \iint_{B} \langle x, y, 0 \rangle \bullet \langle 0, 0, -1 \rangle \, dS = 0$$

$$\iint_{\text{Side}} \vec{\mathbf{F}} \bullet \vec{\mathbf{n}} \, dS = \iint_{\text{Side}} \langle x, y, 0 \rangle \bullet \frac{\langle x, y, 0 \rangle \, dS}{\sqrt{x^2 + y^2}}$$

$$\iint_{S} \vec{\mathbf{F}} \cdot \vec{\mathbf{n}} \, dS = \iint_{\text{Side}} \sqrt{x^2 + y^2} \, dS$$
$$= \iint_{\text{Side}} 2 \, dS$$
$$= 2 \cdot \text{Area(Side)}$$
$$= 40\pi$$

$$\iiint_{V} \operatorname{div} \vec{\mathbf{F}} dV = \iiint_{V} 2 dV = 2 \cdot \operatorname{Vol}(V) = 2 \cdot \pi \cdot 2^{2} \cdot 5 = 40\pi$$

Divergence Theorem - Conditions

 $\nabla \bullet \vec{\mathbf{F}}$ must exist at all points in the interior of the solid S must be a closed surface.

Example: Let V be the region bounded by the paraboloid $z=1-x^2-y^2$ and the xy plane.

Let S be the surface that completely surrounds V.

Let Ω be the parabolic portion of S

Let B be the disk at the bottom.

Let $\vec{\mathbf{F}} = \langle x^2, y^2, z \rangle$. Calculate $\iint_{\Omega} \vec{\mathbf{F}} \cdot \vec{\mathbf{n}} \, dS$.

The surface Ω is not a closed surface but S is.

$$\iint_{S} \vec{\mathbf{F}} \bullet \vec{\mathbf{n}} \, dS = \iint_{\Omega} \vec{\mathbf{F}} \bullet \vec{\mathbf{n}} \, dS + \iint_{B} \vec{\mathbf{F}} \bullet \vec{\mathbf{n}} \, dS$$

We can use the Divergence Theorem for $\iint_S \vec{\mathbf{F}} \cdot \vec{\mathbf{n}} \, dS$ because $\iint_S \vec{\mathbf{F}} \cdot \vec{\mathbf{n}} \, dS = \iiint_V \nabla \cdot \vec{\mathbf{F}} \, dV$ and therefore,

$$\iiint_{V} \nabla \bullet \vec{\mathbf{F}} \, dV = \iint_{\Omega} \vec{\mathbf{F}} \bullet \vec{\mathbf{n}} \, dS + \iint_{B} \vec{\mathbf{F}} \bullet \vec{\mathbf{n}} \, dS$$

$$\iint_{\Omega} \vec{\mathbf{F}} \bullet \vec{\mathbf{n}} \, dS = \iiint_{V} \nabla \bullet \vec{\mathbf{F}} \, dV - \iint_{B} \vec{\mathbf{F}} \bullet \vec{\mathbf{n}} \, dS$$

$$\iint_{B} \vec{\mathbf{F}} \bullet \vec{\mathbf{n}} \, dS = \iint_{B} \langle x^{2}, y^{2}, 0 \rangle \bullet \langle 0, 0, -1 \rangle \, dx \, dy = 0$$

$$\iint_{\Omega} \vec{\mathbf{F}} \cdot \vec{\mathbf{n}} \, dS = \iiint_{V} \nabla \cdot \vec{\mathbf{F}} \, dV - \iint_{B} \vec{\mathbf{F}} \cdot \vec{\mathbf{n}} \, dS$$

$$= \iiint_{V} (2x + 2y + 1) dV - 0$$

$$= \iint_{0}^{1} \int_{0}^{1 - r^{2}} \int_{0}^{2\pi} (2r \cos \theta + 2r \sin \theta + 1) r \, d\theta \, dz \, dr + 0$$

$$= \frac{\pi}{2}$$