Assignments - Spring 2023

Assignment 1. Surface Area

Hand in the following problems:

1. Let Q be the region in the xy plane bounded by the lines x = 0, y = 2 and 3y - 2x = 0. Find the surface area of the portion of the surface $z = x + \frac{y^2}{2}$ that is directly over Q.

2. Find the surface area of the portion of the cylinder $y^2 + z^2 = 9$ above the rectangle in the xy plane where $0 \le x \le 2$ and $-3 \le y \le 3$

3. Find the surface area of the surface S defined by the equation:

 $\langle x, y, z \rangle = \langle u, v, 1 - u - v \rangle$ where $0 \le u \le 1$ and $0 \le v \le 1$

Continue to next page for problems 4 and 5

4. Find the surface area of the paraboloid S defined by the equation:

$$\langle x, y, z \rangle = \langle u \cos v, u \sin v, u^2 \rangle$$
 where $\frac{1}{2} \le u \le 1$ and $0 \le v \le 2\pi$

5. The following equation describes a portion of a sphere of radius 2

 $\langle x, y, z \rangle = \langle 2\cos\theta\sin\phi, 2\sin\theta\sin\phi, 2\cos\phi \rangle \quad \text{where } 0 \le \theta \le 2\pi \text{ and } 0 \le \phi \le \frac{\pi}{3}$

a. Find the surface area of this portion of the sphere.

b. If electric charge is distributed over this surface and has a charge density of $\delta = \frac{1}{2}z$ coulombs/m², then the total amount of charge on this surface is $\iint_S \frac{1}{2}z \, dS$. Calculate this integral.

Assignment 2. Surface Integrals

Hand in the following problems:

1. Let S_P be the planar surface described by the equation $\vec{\mathbf{r}} = \langle x, y, 1-y \rangle$ for $0 \le x \le 1$ and $0 \le y \le 1$. Let $\vec{\mathbf{F}} = \langle z, y, x \rangle$.

Calculate the surface integral $\iint_{S_P} \vec{\mathbf{F}} \bullet \vec{\mathbf{n}} \, dS$.

2. Let Ω be the parabolic surface described by the equation $\vec{\mathbf{r}} = \langle u \cos \theta, u \sin \theta, 1 - u^2 \rangle$ for $0 \le u \le 1$ and $0 \le \theta \le 2\pi$. Let $\vec{\mathbf{F}} = \langle 2x, 2y, 2z \rangle$.

Calculate the surface integral $\iint_{\Omega} \vec{\mathbf{F}} \bullet \vec{\mathbf{n}} dS$.

3. Let S be the sphere described by the equation r = ⟨cos θ sin φ, sin θ sin φ, cos φ⟩ for 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π. Let F = ⟨-y, x, 0⟩. Calculate the surface integral ∬_S F • n dS.
4. Let Ω the portion of the cylinder y² + z² = 9 above the rectangle in the xy plane where 0 ≤ x ≤ 2 and -3 ≤ y ≤ 3}. You found the surface area of this surface in Assignment 1.

Let $\vec{\mathbf{F}} = \langle x, y, y + z \rangle$ Calculate the surface integral $\iint_{\Omega} \vec{\mathbf{F}} \bullet \vec{\mathbf{n}} dS$.

5. Again, let Ω be the surface described in Problem 4 of this assignment and let $\vec{\mathbf{F}}$ be the vector field given by the equation: $\vec{\mathbf{F}} = \langle x, y, y + z \rangle$. Let V be the solid bounded from above by Ω and below by the xy plane for $= -3 \leq y \leq 3$. Let S be the *closed surface* that completely surrounds V. S includes not only Ω , but also two semicircular sides at x = 0 and x = 2 and a rectangular base on the xy plane.

Calculate the surface integral $\iint_S \vec{\mathbf{F}} \bullet \vec{\mathbf{n}} \, dS$ by combining the surface integrals over all four boundaries.

Assignment 3. Divergence Theorem

Hand in the following problems:

Let T be the three dimensional solid bounded from above by the paraboloid described 1. by the equation $z = 1 - x^2 - y^2$ and from below by z = 0. Let S be the closed surface that completely surrounds T. Let $\vec{\mathbf{F}} = \langle 2x, 2y, 2z \rangle$. Use the Divergence Theorem to calculate $\iint_{S} \vec{\mathbf{F}} \bullet \vec{\mathbf{n}} \, dS.$

2. Let R be the rectangular region with $0 \le x \le 2$ and $0 \le y \le 1$. Let V be the three dimensional region that lies above R but below the plane z = 2y. Let S be the closed surface surrounding V.

Let $\vec{\mathbf{F}} = \langle x+y, y+z, z-x \rangle$. Use the Divergence Theorem to evaluate the surface integral $\iint_{S} \vec{\mathbf{F}} \bullet \vec{\mathbf{n}} \, dS.$

3. Let T be the three dimensional solid bounded from above by the half cylinder described by the equation $z = \sqrt{9 - y^2}$ and from below the xy plane for $0 \le x \le 2$ and $-3 \le y \le 3$. Let S be the closed surface that completely surrounds T. Let $\vec{\mathbf{F}} = \langle x, y, y + z \rangle$.

You calculated $\iint_{S} \vec{\mathbf{F}} \bullet \vec{\mathbf{n}} \, dS$ on Assignment 2 already. This time, calculate $\iint_{S} \vec{\mathbf{F}} \bullet \vec{\mathbf{n}} \, dS$ using the Divergence Theorem.

4. Let T be the quarter sphere solid that is inside $x^2 + y^2 + z^2 = 1$ for $x \ge 0$ and $y \ge 0$. Let S be the closed surface that completely surrounds T. Let $\vec{\mathbf{F}} = (3z + y)\vec{\mathbf{k}}$. Use the Divergence Theorem to calculate $\iint_S \vec{\mathbf{F}} \bullet \vec{\mathbf{n}} \, dS$

5. Let $\vec{\mathbf{F}} = (x^2 + y^2) \vec{\mathbf{j}}$. Let S be the closed surface surrounding the rectangular box with vertices:

ver 01005.				
	(0,0,0)	(1, 0, 0)	(1,2,0)	(0, 2, 0)
	(0,0,3)	(1,0,3)	(1,2,3)	(0,2,3)
Evaluate	$\int \int_{S} \vec{\mathbf{F}} \bullet \vec{\mathbf{n}} dS$ using	ng the Divergence	Theorem	

Assignment 4. Divergence and Curl

Hand in the following problems:

- 1. Find div $\vec{\mathbf{F}}$, given that: (a) $\vec{\mathbf{F}} = e^{xy} \vec{\mathbf{i}} + \sin xy \vec{\mathbf{j}} + \cos^2 zx \vec{\mathbf{k}}$. (b) $\vec{\mathbf{F}} = \nabla \phi$, where $\phi = 3x^2y^3z$.
- Find **curl** $\vec{\mathbf{F}}$ if $\vec{\mathbf{F}} = z^2 x \vec{\mathbf{i}} + y^2 z \vec{\mathbf{j}} z^2 y \vec{\mathbf{k}}$. 2.
- Given $\vec{\mathbf{F}}(x, y, z) = x^2 y \vec{\mathbf{i}} + z \vec{\mathbf{j}} (x + y z) \vec{\mathbf{k}}$, find $\nabla \bullet \vec{\mathbf{F}}$ (b) $\nabla \times \vec{\mathbf{F}}$ 3.
- (c) $\nabla(\nabla \bullet \vec{\mathbf{F}})$ (a)

Let $\phi = \phi(x, y, z)$ be some scalar-valued function. Let $\vec{\mathbf{F}} = \langle F_1, F_2, F_3 \rangle$ be some **4**. vector field where each coordinate may depend on x, y and z. Classify each of the following expressions as vector, scalar or meaningless.

$$\nabla \bullet (\nabla \phi) \qquad \nabla \times (\nabla \bullet \vec{\mathbf{F}}) \qquad \nabla \bullet (\nabla^2 \phi) \qquad \vec{\mathbf{F}} \bullet \nabla \phi \qquad \vec{\mathbf{F}} \times \nabla \phi$$

5. Let $\phi(x, y) = x^2 y^4 + xy$. Let $\vec{\mathbf{F}} = \langle x, -z, y \rangle$ Calculate each of the following:

a.
$$\nabla \phi$$
 b. $\nabla^2 \phi$ **c**. $\nabla \bullet \vec{\mathbf{F}}$ **d**. $\nabla \times \vec{\mathbf{F}}$

Assignment 5. Line Integrals

Hand in the following problems:

1. The following equation describes a parabolic path *C*:

$$\vec{\mathbf{r}}(t) = \langle t, 2, 1 - t^2 \rangle \qquad -1 \le t \le 1$$

If $\vec{\mathbf{F}} = \langle 3z, x + y + z, 2x \rangle$, calculate the line integral $\int_C \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}}$

2. The following equation describes a semiellipse C_1 :

$$\vec{\mathbf{r}}(t) = \langle \cos t, \ \cos t, \ \sin t \rangle \qquad -\frac{\pi}{2} \le t \le \frac{\pi}{2}$$

If $\vec{\mathbf{F}} = \langle 0, 2z, 4y + 1 \rangle$, calculate the line integral $\int_{C_1} \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}}$

3. Let C_1 be the same curve defined in problem 2 and again let $\vec{\mathbf{F}} = \langle 0, 2z, 4y + 1 \rangle$. Let C_2 be the straight line segment from (0, 0, 1) to (0, 0, -1). Together, path C_1 followed by path C_2 form a closed loop C.

Calculate $\oint_C \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}}$ by combining $\int_{C_1} \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}}$ with $\int_{C_2} \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}}$.

4. Let L_1 be the straight line segment from (0, 0, 1) to (1, 2, 0) and let $\vec{\mathbf{F}} = \langle z+2x, 2y, x \rangle$. Calculate the line integral $\int_{L_1} \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}}$

5. Let L_1 and $\vec{\mathbf{F}}$ be the same as defined in problem 4. Let L_2 be the straight line segment from (1, 2, 0) to (1, 2, 1). Let L_3 be the straight line segment from (1, 2, 1) to (0, 0, 1). Path L_1 followed by path L_2 and then by path L_3 forms a closed triangular loop C. Calculate $\oint_C \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}}$ by combining $\int_{L_1} \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}}$, $\int_{L_2} \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}}$ and $\int_{L_3} \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}}$.

Assignment 6. Fundamental Theorem for Line Integrals

1. For each vector field $\vec{\mathbf{F}}$, find a scalar valued function $\phi = \phi(x, y)$ so that $\vec{\mathbf{F}} = \nabla \phi$.

a.
$$\vec{\mathbf{F}} = \left\langle \frac{y^2}{2x}, \ y \ln x \right\rangle$$

b.
$$\vec{\mathbf{F}} = \left\langle y + \frac{1}{x}, x \right\rangle$$

2. Let $\vec{\mathbf{F}} = \left\langle \frac{y^2}{2x}, y \ln x \right\rangle$

Calculate $\int_{\Gamma} \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}}$ where Γ is the straight line segment connecting (1,1) to (2,2).

3. Let *H* be the segment of the hyperbola $x^2 - y^2 = 1$ connecting (1,0) to $(2,\sqrt{3})$. Evaluate the integral:

$$\int_{H} \left(y + \frac{1}{x} \right) \, dx + x \, dy$$

4. Let $\vec{\mathbf{F}} = \left\langle 2y\sqrt{y} + 4, \ 3x\sqrt{y} \right\rangle$

a. Find a scalar-valued function $\phi = \phi(x, y)$ so that $\vec{\mathbf{F}} = \nabla \phi$

b. Calculate the line integral $\int_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$ where C is any path connecting (1, 1) to $(\frac{1}{2}, 4)$

5. Let $\vec{\mathbf{F}} = \langle e^x y, e^x + z, y \rangle$.

Let L be the straight line path from (1, 0, 0) to $(0, \pi, \pi)$. Calculate the following line integral:

$$\int_L \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}}$$

Assignment 7. Stokes' Theorem

1. Let C be the circle of radius 1 around the origin in the yz plane. Let $\vec{\mathbf{F}} = \langle 0, y +$ $4z, 6y+z\rangle.$

Use Stokes' Theorem to calculate $\oint_C \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}}$.

2. Let C be the square in the xy plane with equation |x| + |y| = 1.

Let $\vec{\mathbf{F}} = -y\vec{\mathbf{i}} + x\vec{\mathbf{j}}$. Calculate $\oint_C \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}}$ in two ways: a) Add up the integrals over all four line segments of C.

b) Use Stokes' Theorem.

3. Let $\vec{\mathbf{F}} = -2y\vec{\mathbf{i}} + x\vec{\mathbf{j}} + x\vec{\mathbf{k}}$

Let C be the intersection of the plane z = 1 + y with the cylinder $x^2 + y^2 = 1$ and orient C counterclockwise as viewed from above.

Use Stokes' Theorem to calculate the line integral $\oint_C \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}}$.

4. Use Stokes' Theorem to find the closed loop line integral in Assignment 5 Problem 3.

5. Use Stokes' Theorem to find the closed loop line integral in Assignment 5 Problem 5.

Assignment 8. Stokes' Theorem and Green's Theorem

1. Let *R* be the region in the first and second quadrants of the *xy* plane bounded by the lines y = x, y = -x and the circle $x^2 + y^2 = 4$. Let *C* be the boundary of this region, traversed in a counterclockwise direction. Let $\vec{\mathbf{v}} = x^2 y \vec{\mathbf{i}} + xy^2 \vec{\mathbf{j}}$. Use Green's Theorem to evaluate $\oint_C \vec{\mathbf{v}} \cdot d\vec{\mathbf{r}}$

2. Let C denote the triangular path connecting (0,0,0) to (1,0,0) to (0,1,0) and back to (0,0,0). C forms the boundary of a triangular region S_{xy} in the xy plane. Show how Green's Theorem can be used to calculate:

$$\oint_C xy \, dx + \frac{1}{2} \left(x^2 + x + y \right) \, dy$$

3. Let R be the region in the yz plane below the curve $z = \sqrt{y}$ and above the y-axis between y = 0 and y = 2. Let C be the curve surrounding this region R. Assume that C is traversed in the counterclockwise direction as viewed from the positive x-axis.

Let $\vec{\mathbf{F}} = \frac{1}{2}z^2\vec{\mathbf{j}} + y\vec{\mathbf{k}}$. Use Stokes' Theorem to evaluate $\oint_C \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}}$

4. Let S be the portion of the surface $z = 1 + y^2$ bounded by the vertical planes x = 0, x = 1, y = 0 and y = 1. Let C be the curve that forms the boundary of S. You may assume that C is traversed in the counterclockwise direction. Define $\vec{\mathbf{F}}$ as follows:

$$\vec{\mathbf{F}} = z\vec{\mathbf{i}} + 2x\vec{\mathbf{j}} + 3y\vec{\mathbf{k}}$$

Evaluate $\oint_C \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}}$ using Stokes' Theorem.

5. Let H be the hemisphere described by the equation

$$z = \sqrt{1 - x^2 - y^2}$$

Let $\vec{\mathbf{F}} = z\vec{\mathbf{i}}$. Use any legitimate method to calculate the surface integral:

$$\iint_{H} (\nabla \times \vec{\mathbf{F}}) \bullet \vec{\mathbf{n}} \, dS$$

Assignment 9. Fourier Series

- 1. Classify each of the following functions as even, odd or neither even nor odd:
- **a.** $f(x) = x^3 + x$ **b.** $f(x) = \sin^2 x \cos x$ **c.** f(x) = x - |x| **b.** $f(x) = \sin^2 x \cos x$ **d.** $f(x) = \begin{cases} x - x^2 & \text{for } x \ge 0 \\ x^2 + x & \text{for } x \le 0 \end{cases}$

Problems 2 - 5. A Fourier series for a function f(x) on the interval $-L \le x \le L$ has the form:

$$\frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right)$$

For each of the following problems, calculate the Fourier series for the given function f(x) and the specified value of L. Also, graph the sum of the first three non-zero terms of the series. Please note that for Problem 4, you may leave your answer in terms of $\cos \frac{n\pi}{2}$.

2.
$$f(x) = \begin{cases} \pi - x & \text{for } x \ge 0\\ -\pi - x & \text{for } x < 0 \end{cases} \qquad L = \pi$$

3.
$$f(x) = |x| - x$$
 $L = \pi$

4.
$$f(x) = \begin{cases} 0 & \text{for } -\pi \le x \le -\frac{\pi}{2} \\ -1 & \text{for } -\frac{\pi}{2} \le x \le 0 \\ 1 & \text{for } 0 \le x \le \frac{\pi}{2} \\ 0 & \text{for } \frac{\pi}{2} \le x \le \pi \end{cases} L = \pi$$

5.
$$f(x) = \begin{cases} x - x^2 & \text{for } 0 \le x \le 1 \\ x^2 + x & \text{for } -1 \le x \le 0 \end{cases} \quad L = 1$$

Assignment 10. Ordinary Differential Equations and Complex Number

This is a review assignment if you have already taken MA 345. If you haven't taken MA 345, then watch the videos on differential equations that have been provided.

For problems 1 - 3, find the general solution y = y(t) for each of the following differential equations.

1.
$$\frac{d^2y}{dt^2} - 16y = 0$$

$$\frac{d^2y}{dt^2} - 6\frac{dy}{dt} + 8y = 0$$

$$\frac{d^2y}{dt^2} + \pi^2 y = 0$$

4. Use Euler's formula to write each of the following in terms of sine and cosine. Simplify as much as possible.

a. $e^{8\pi i}$ **b.** $e^{i\frac{\pi}{2}}$ **c.** $e^{-1+3\pi i}$ **d.** $e^{ix} + e^{-ix}$

5. For each of the following exponential equations, use Euler's formula and find the most general expression for θ that makes the equation true.

a. $e^{2i\theta} = 1$ **b.** $e^{-i\theta} = -1$

Assignment 11. Partial Differential Equations

1. If we substitute u = X(x)T(t) into the heat equation

$$\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$$

we obtain

$$\frac{T'(t)}{\alpha^2 T(t)} = \frac{X''(x)}{X(x)} = -\lambda^2$$

where λ is called the *separation constant*.

If u satisfies the boundary conditions u(0,t) = 0 and $\frac{\partial u}{\partial x}(\pi,t) = 0$, find the possible values of λ that lead to nontrivial solutions for u.

2. If we substitute u(x,t) = X(x)Y(y) into the equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ we end up with:

$$\frac{X''(x)}{X(x)} = -\frac{Y''(y)}{Y(y)} = -\lambda^2$$

where λ is a constant. For one of the following sets of boundary conditions, $\lambda = 0$ leads to a nontrivial solution. Which one?

- **a.** u(0, y) = 0 and $u(\pi, y) = 0$
- **b.** $\frac{\partial u}{\partial x}(0, y) = 0$ and $\frac{\partial u}{\partial x}(\pi, y) = 0$
- **c.** $\frac{\partial u}{\partial x}(0, y) = 0$ and $u(\pi, y) = 0$
- **3.** If we find the Fourier series solution u = u(x, t) for the equation

$$\frac{\partial u}{\partial t} = 3 \frac{\partial^2 u}{\partial x^2}$$

where u is subject to the boundary conditions u(0,t) = 0 and $u(\pi,t) = 0$ then we obtain:

$$u(x,t) = \sum_{n=1}^{\infty} b_n e^{-3n^2 t} \sin nx$$

If the initial condition is $u(x, 0) = \sin x \cos x$ then calculate the coefficients b_n .

Hint: If you use an appropriate trigonometric identity for $\sin x \cos x$, you won't have to find any antiderivatives at all to see the answer.

4. Suppose u = u(x, t) is the solution to the partial differential equation:

$$\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2}$$

and u also satisfies the boundary conditions u(0,t) = 0 and u(1,t) = 0 for all t as well as the initial conditions u(x,0) = 0 and $\frac{\partial u}{\partial t}(x,0) = x - x^2$ for all x in the interval from x = 0 to x = 1. Find the Fourier series solution for u(x,t).