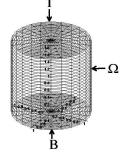
MA 441	Spring 2022	T4a - Solutions	Dr. E. Jacobs
1. (16 po	pints) Let V be	the three dimensional region inside the	cylinder $x^2 + y^2 = 1$
for $0 \leq z \leq 2$. Let S be the closed surface surrounding V.			

S consists of 3 surfaces, Ω , B and T shown below.



Let $\vec{\mathbf{F}} = \langle xz, yz, 0 \rangle$. Calculate the surface integral $\iint_S \vec{\mathbf{F}} \bullet \vec{\mathbf{n}} dS$ by adding up the surface integrals over Ω , B and T. Show all work.

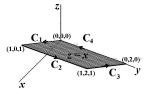
 $\vec{\mathbf{F}}$ has no vertical component so $\iint_T \vec{\mathbf{F}} \bullet \vec{\mathbf{n}} \, dS = 0$ and $\iint_B \vec{\mathbf{F}} \bullet \vec{\mathbf{n}} \, dS = 0$ On Ω , $\vec{\mathbf{r}} = \langle \cos \theta, \ \sin \theta, \ z \rangle$ so $\vec{\mathbf{n}} \, dS = \frac{\partial \vec{\mathbf{r}}}{\partial \theta} \times \frac{\partial \vec{\mathbf{r}}}{\partial z} \, d\theta \, dz = \langle \cos \theta, \ \sin \theta \ 0 \rangle \, d\theta \, dz$

$$\iint_{\Omega} \vec{\mathbf{F}} \bullet \vec{\mathbf{n}} \, dS = \int_{0}^{2} \int_{0}^{2\pi} \langle z \cos \theta, \ z \sin \theta, \ 0 \rangle \bullet \langle \cos \theta, \ \sin \theta, \ 0 \rangle \, d\theta \, dz$$
$$= \int_{0}^{2} \int_{0}^{2\pi} z \, d\theta \, dz = 4\pi$$

2. (16 points) Let S and $\vec{\mathbf{F}}$ be defined exactly as in problem 1. Calculate $\iint_S \vec{\mathbf{F}} \bullet \vec{\mathbf{n}} \, dS$ using the Divergence Theorem. Show all work.

$$\iint_{S} \vec{\mathbf{F}} \bullet \vec{\mathbf{n}} \, dS = \iiint_{V} 2z \, dV = \int_{0}^{2} \int_{0}^{1} \int_{0}^{2\pi} 2zr \, d\theta \, dr \, dz = 4\pi$$

3. (16 points) Let $\vec{\mathbf{F}} = \langle 0, 2x + 2y, 0 \rangle$. Let C_1 be the straight line path from (0, 0, 0) to (1, 0, 1)Let C_2 be the straight line path from (1, 0, 1) to (1, 2, 1)Let C_3 be the straight line path from (1, 2, 1) to (0, 2, 0)Let C_4 be the straight line path from (0, 2, 0) to (0, 0, 0)Together, these paths form a closed rectangular loop C. All points on C lie on the plane z = x.



Calculate $\oint_C \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}}$ by adding up the line integrals over C_1, C_2, C_3 and C_4 . Show all work.

dy = 0 on C_1 and C_3 , so $\int_{C_1} (2x + 2y) dy = \int_{c_3} (2x + 2y) dy = 0$ On C_2 , $\int_{C_2} (2x + 2y) dy = \int_0^2 (2 + 2y) dy = 8$ On C_4 , $\int_{C_4} (2x + 2y) dy = \int_2^0 (0 + 2y) dy = -4$ Adding up all four integrals:

$$\oint_C \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}} = 0 + 8 + 0 - 4 = 4$$

4. (16 points) Let $\vec{\mathbf{F}}$ and C be defined exactly as in Problem 3. Calculate $\oint_C \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}}$ using Stokes' Theorem. Show all work.

$$\nabla \times \mathbf{F} = \langle 0, 0, 2 \rangle.$$

$$\vec{\mathbf{r}} = \langle x, y, x \rangle \text{ so } \vec{\mathbf{n}} \, dS = \frac{\partial \vec{\mathbf{r}}}{\partial x} \times \frac{\partial \vec{\mathbf{r}}}{\partial y} \, dx \, dy = \langle -1, 0, 1 \rangle \, dx \, dy$$

$$\oint_C \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}} = \int_0^2 \int_0^1 \langle 0, 0, 2 \rangle \bullet \langle -1, 0, 1 \rangle \, dx \, dy = \int_0^2 \int_0^1 2 \, dx \, dy = 4$$

5. (16 points) Find the Fourier series for $f(x) = 4 - \frac{1}{2}x$ on the interval $-\pi \le x \le \pi$.

$$a_{0} = \frac{1}{\pi} \int_{-\pi}^{\pi} \left(4 - \frac{1}{2}x\right) dx = 8$$
$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} \left(4 - \frac{1}{2}x\right) \cos nx \, dx = 0 \text{ for } n \ge 1$$
$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} \left(4 - \frac{1}{2}x\right) \sin nx \, dx = \frac{(-1)^{n}}{n}$$
$$f(x) = 4 + \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} \sin nx$$

6. (20 points) Let u(x,t) be the solution of $\frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} = 0$, where u(x,t) satisfies the boundary conditions u(0, t) = 0 and u(1, t) = 0. Obtain the solution in the form of a Fourier series by first looking for solutions of the form X(x)T(t). There are no initial conditions given, so your Fourier series answer will have coefficients that remain undetermined.

$$u(x,t) = \sum_{n=1}^{\infty} a_n e^{-n^2 \pi^2 t} \sin n\pi x$$