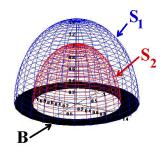
MA 441

Dr. E. Jacobs

Practice Problems for Final Exam

1. Let V be the region between the two spheres $x^2 + y^2 + z^2 = 1$ and $x^2 + y^2 + z^2 = 2$ for $z \ge 0$. Let S be the closed surface surrounding V. S consists of three surfaces, S_1 , S_2 and B, shown below.



Let $\vec{\mathbf{F}} = \langle 0, 0, 2z^2 \rangle$. Calculate the surface integral $\iint_S \vec{\mathbf{F}} \bullet \vec{\mathbf{n}} dS$ by adding up the surface integrals over S_1, S_2 and B.

2. Let $\vec{\mathbf{F}}$ and S be defined exactly as in problem 1. Calculate $\iint_S \vec{\mathbf{F}} \bullet \vec{\mathbf{n}} dS$ by using the Divergence Theorem.

3. Let $\vec{\mathbf{F}} = \langle 2xz + z, 0, x^2 + x \rangle$. Is $\vec{\mathbf{F}}$ a conservative vector field? If it is, find a scalar valued function ϕ so that $\vec{\mathbf{F}} = \nabla \phi$. If $\vec{\mathbf{F}}$ is not a conservative vector field, prove it.

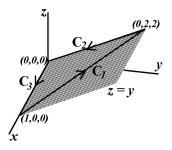
4. Let $\vec{\mathbf{F}} = \langle -y, x, z^2 \rangle$.

Let C_1 be the straight line path from (1, 0, 0) to (0, 2, 2)

Let C_2 be the straight line path from (0, 2, 2) to (0, 0, 0)

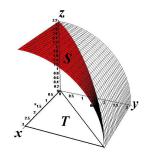
Let C_3 be the straight line path from (0, 0, 0) to (1, 0, 0)

Together, these paths form a closed triangular loop C. All points on C lie on the plane z = y.



- **a)** Calculate $\oint_C \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}}$ by adding up the line integrals over C_1, C_2 and C_3 .
- **b)** Calculate $\oint_C \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}}$ using Stokes' Theorem.

5. Let T be the triangular region in the xy plane with vertices (0, 0, 0), $(\pi, 0, 0)$ and $(\pi, \pi, 0)$. Let S be the portion of the cylinder $x^2 + z^2 = \pi^2$ that lies directly above T. Calculate the surface area of S



6. Which of the following functions would be given as a Fourier sine series? a) $f(x) = \sin x \cos x \tan^2 x$ b) f(x) = 3x c) $f(x) = x^2 - x^3$ d) $f(x) = \sin x + \cos x$

7. Find the Fourier series for the following function f(x) on the interval $-1 \le x \le 1$.

$$f(x) = x + \sin \pi x$$

8. Let u(x,t) be the solution of $\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial t^2} = 0$, where u(x,t) satisfies the boundary conditions u(0, t) = 0 and $u(\pi, t) = 0$. Obtain the solution in the form of a Fourier series by first looking for solutions of the form X(x)T(t). There are no initial conditions given, so your Fourier series answer will have coefficients that remain undetermined.