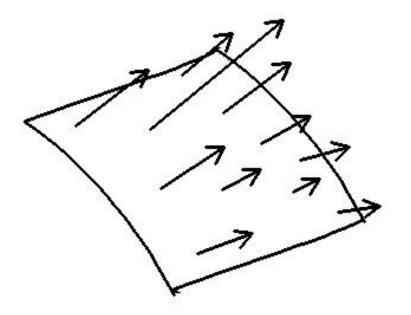
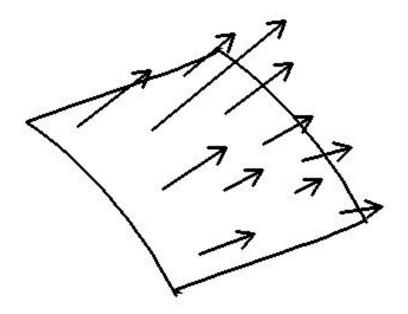
Surface Integrals

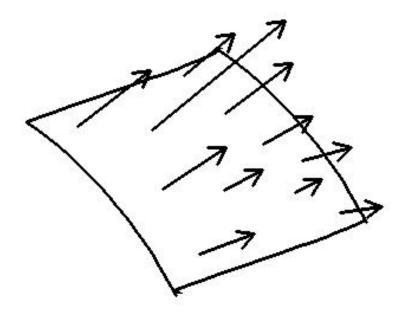
$$\iint_{S} \vec{\mathbf{F}} \bullet \vec{\mathbf{n}} \, dS$$

Flow through a surface



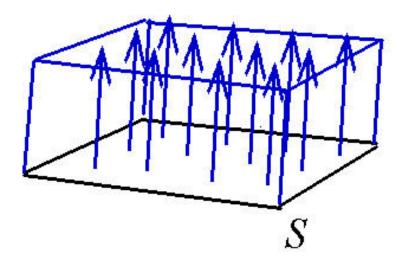


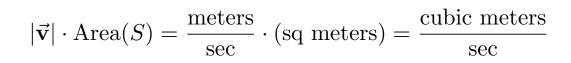
Flow of heat or energy (joules per sec per meter²)



Flow of heat or energy (joules per sec per meter²) Flow of electric charge (amperes per meter²) Flow of a fluid (kg per sec per meter²)

1 MAMAA S



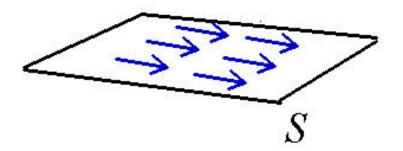


Let ρ is the density of this fluid (in kilograms per cubic meter)

$$\begin{split} \rho | \vec{\mathbf{v}} | \cdot \operatorname{Area}(S) \\ \frac{\operatorname{kilograms}}{\operatorname{cubic meters}} \cdot \frac{\operatorname{cubic meters}}{\operatorname{second}} = \frac{\operatorname{kilograms}}{\operatorname{second}} \end{split}$$

Let's define $\vec{\mathbf{F}} = \rho \vec{\mathbf{v}}$ so that $|\vec{\mathbf{F}}| \cdot \operatorname{Area}(S)$ is the rate at which mass is flowing.

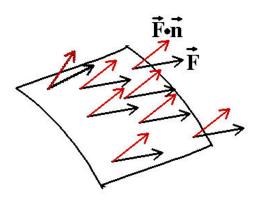
 $\vec{\mathbf{F}}$ is not necessarily perpendicular to the surface.



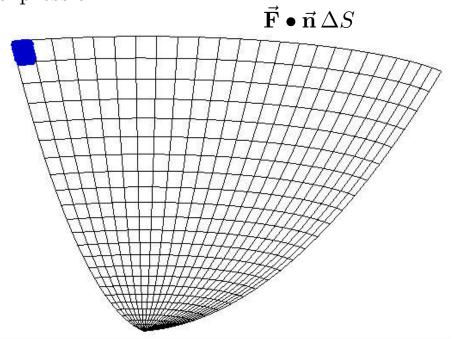
If \vec{n} represents the *unit normal vector* to the surface S then $\vec{F} \bullet \vec{n}$ is the normal component. and

$$(\vec{\mathbf{F}} \bullet \vec{\mathbf{n}})(\operatorname{Area}(S))$$

is the rate at which mass is flowing through the surface.



Divide S into many small sections where each section has area ΔS . The flux through each section is approximated by the expression:



The flux through the entire surface S is the limit of the sum of terms of the form $\vec{\mathbf{F}} \bullet \vec{\mathbf{n}} \Delta S$

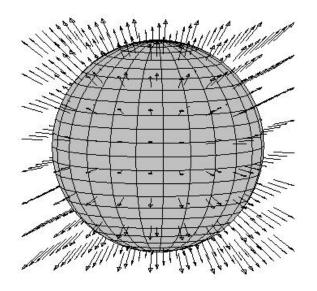
$$\Phi_S = \iint_S \vec{\mathbf{F}} \bullet \vec{\mathbf{n}} \, dS$$

Other notation: Let $\vec{\mathbf{dS}} = \vec{\mathbf{n}} \, dS$

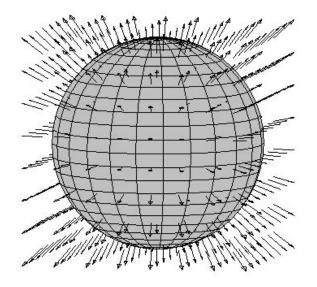
$$\Phi_S = \iint_S \vec{\mathbf{F}} \bullet \vec{\mathbf{dS}}$$

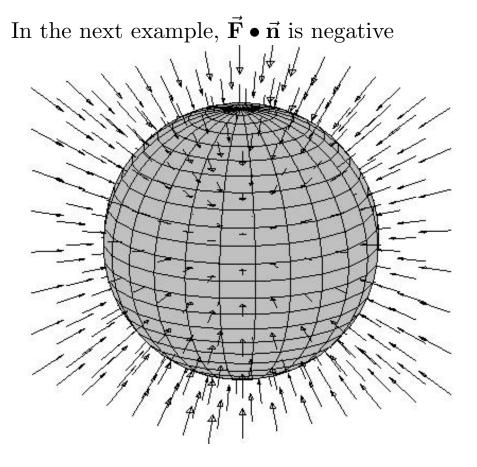
Closed Surfaces and Enclosed Volumes

There are some surfaces, such as spheres, ellipsoids and cubes that have a well defined *inside* and *outside*. In these cases, we will take the direction of $\vec{\mathbf{n}}$ to be towards the outside.

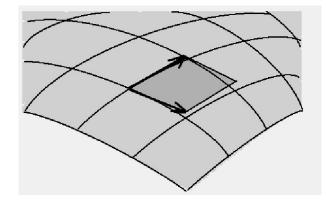


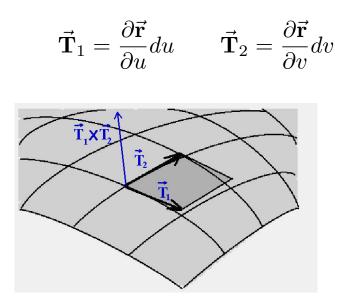
If $\vec{\mathbf{F}}$ points towards the outside, $\vec{\mathbf{F}}\bullet\vec{\mathbf{n}}$ is positive



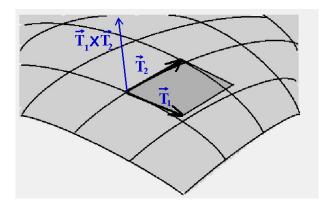


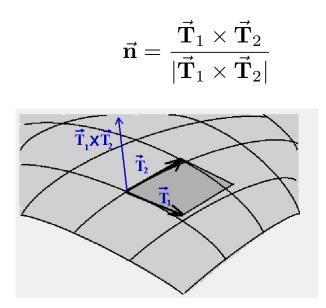
There is a convenient formula for $\iint_S \vec{\mathbf{F}} \bullet \vec{\mathbf{n}} \, dS$





$$dS = |\vec{\mathbf{T}}_1 \times \vec{\mathbf{T}}_2|$$





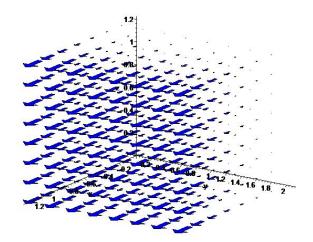
$$\vec{\mathbf{n}} \, dS = \frac{\vec{\mathbf{T}}_1 \times \vec{\mathbf{T}}_2}{|\vec{\mathbf{T}}_1 \times \vec{\mathbf{T}}_2|} \cdot |\vec{\mathbf{T}}_1 \times \vec{\mathbf{T}}_2| = \vec{\mathbf{T}}_1 \times \vec{\mathbf{T}}_2$$

Substitute $\vec{\mathbf{T}}_1 = \frac{\partial \vec{\mathbf{r}}}{\partial u} du$ $\vec{\mathbf{T}}_2 = \frac{\partial \vec{\mathbf{r}}}{\partial v} dv$
 $\vec{\mathbf{n}} \, dS = \frac{\partial \vec{\mathbf{r}}}{\partial u} \times \frac{\partial \vec{\mathbf{r}}}{\partial v} \, du \, dv$

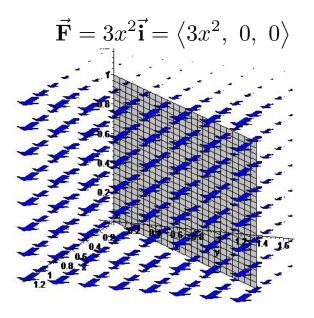
$$\iint_{S} \vec{\mathbf{F}} \bullet \vec{\mathbf{n}} \, dS = \iint_{\mathcal{D}} \vec{\mathbf{F}} \bullet \left(\frac{\partial \vec{\mathbf{r}}}{\partial u} \times \frac{\partial \vec{\mathbf{r}}}{\partial v}\right) \, du \, dv$$

Example:

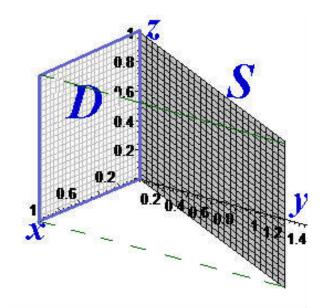
$$\vec{\mathbf{F}} = 3x^2 \vec{\mathbf{i}} = \left\langle 3x^2, \ 0, \ 0 \right\rangle$$



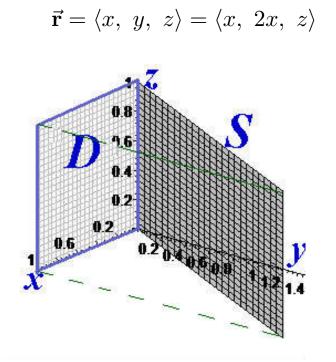
Example:



y = 2x



If every point on the surface satisfies the equation y = 2x then:



In general,

$$\vec{\mathbf{n}} \, dS = \frac{\partial \vec{\mathbf{r}}}{\partial u} \times \frac{\partial \vec{\mathbf{r}}}{\partial v} \, du \, dv$$
$$\vec{\mathbf{r}} = \langle x, \ y, \ z \rangle = \langle x, \ 2x, \ z \rangle$$
$$\vec{\mathbf{n}} \, dS = \frac{\partial \vec{\mathbf{r}}}{\partial x} \times \frac{\partial \vec{\mathbf{r}}}{\partial z} \, dx \, dz$$

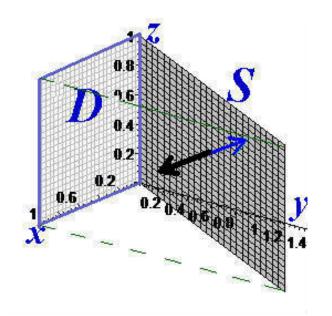
In general,

$$\vec{\mathbf{n}} \, dS = \frac{\partial \vec{\mathbf{r}}}{\partial u} \times \frac{\partial \vec{\mathbf{r}}}{\partial v} \, du \, dv$$
$$\vec{\mathbf{r}} = \langle x, \ y, \ z \rangle = \langle x, \ 2x, \ z \rangle$$
$$\vec{\mathbf{n}} \, dS = \frac{\partial \vec{\mathbf{r}}}{\partial x} \times \frac{\partial \vec{\mathbf{r}}}{\partial z} \, dx \, dz$$

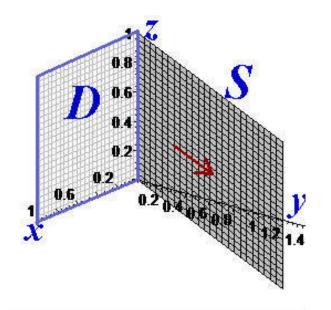
or is it

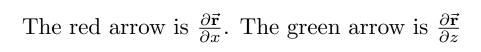
$$\vec{\mathbf{n}} \, dS = \frac{\partial \vec{\mathbf{r}}}{\partial z} \times \frac{\partial \vec{\mathbf{r}}}{\partial x} \, dx \, dz$$
?????

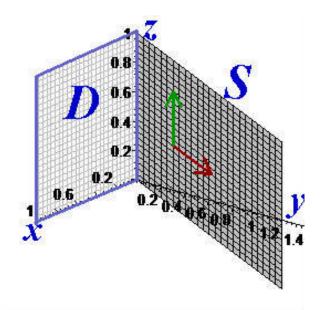
Which direction should we take for \vec{n} ?

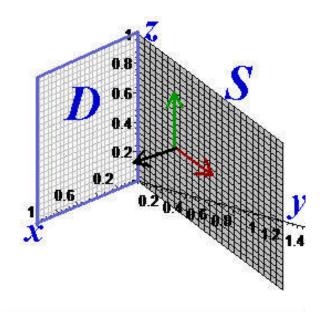


The red arrow is $\frac{\partial \vec{\mathbf{r}}}{\partial x}$









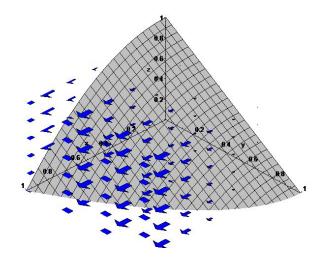
$$\vec{\mathbf{r}} = \langle x, y, z \rangle = \langle x, 2x, z \rangle$$
$$\frac{\partial \vec{\mathbf{r}}}{\partial x} \times \frac{\partial \vec{\mathbf{r}}}{\partial z} = \begin{vmatrix} \vec{\mathbf{i}} & \vec{\mathbf{j}} & \vec{\mathbf{k}} \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{vmatrix} = 2\vec{\mathbf{i}} - \vec{\mathbf{j}} = \langle 2, -1, 0 \rangle$$
$$\vec{\mathbf{F}} \bullet \left(\frac{\partial \vec{\mathbf{r}}}{\partial x} \times \frac{\partial \vec{\mathbf{r}}}{\partial z} \right) = \langle 3x^2, 0, 0 \rangle \bullet \langle 2, -1, 0 \rangle = 6x^2$$

$$\iint_{\mathcal{D}} \vec{\mathbf{F}} \bullet \left(\frac{\partial \vec{\mathbf{r}}}{\partial x} \times \frac{\partial \vec{\mathbf{r}}}{\partial z} \right) \, dz \, dx = \int_0^1 \int_0^1 6x^2 \, dz \, dx$$
$$= 2$$

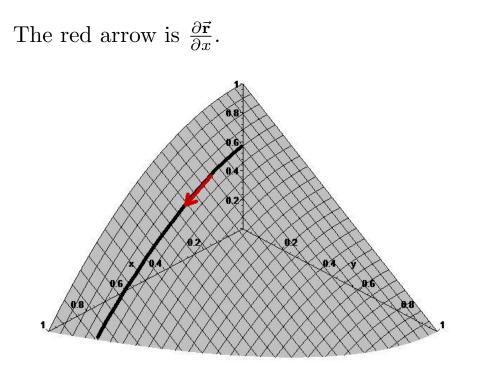
Example: Take the same vector field as before.

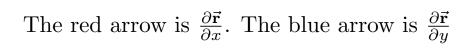
$$\vec{\mathbf{F}} = 3x^{2}\vec{\mathbf{i}}$$

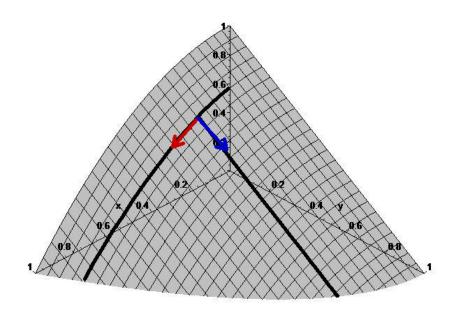
Let Ω be the portion of $z = 1 - x^2 - y$ in the first octant.



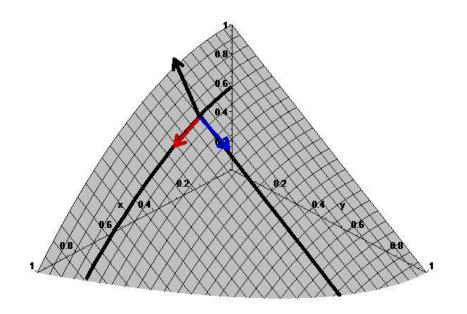
If $z = 1 - x^2 - y$ then $\vec{\mathbf{r}} = \langle x, y, z \rangle = \langle x, y, 1 - x^2 - y \rangle$ $\frac{\partial \vec{\mathbf{r}}}{\partial x} = \langle 1, 0, -2x \rangle$ $\frac{\partial \vec{\mathbf{r}}}{\partial y} = \langle 0, 1, -1 \rangle$ $\frac{\partial \vec{\mathbf{r}}}{\partial x} \times \frac{\partial \vec{\mathbf{r}}}{\partial y} = \begin{vmatrix} \vec{\mathbf{i}} & \vec{\mathbf{j}} & \vec{\mathbf{k}} \\ 1 & 0 & -2x \\ 0 & 1 & -1 \end{vmatrix} = \langle 2x, 1, 1 \rangle$







 $\frac{\partial \vec{\mathbf{r}}}{\partial x} \times \frac{\partial \vec{\mathbf{r}}}{\partial y}$ will point in the direction we want for $\vec{\mathbf{n}}$



$$\vec{\mathbf{F}} \bullet \left(\frac{\partial \vec{\mathbf{r}}}{\partial x} \times \frac{\partial \vec{\mathbf{r}}}{\partial y} \right) = \langle 3x^2, 0, 0 \rangle \bullet \langle 2x, 1, 1 \rangle = 6x^3$$
$$\iint_{\Omega} \vec{\mathbf{F}} \bullet \vec{\mathbf{n}} \, dS = \iint_{\mathcal{D}} 6x^3 \, dy \, dx$$

$$\vec{\mathbf{F}} \bullet \left(\frac{\partial \vec{\mathbf{r}}}{\partial x} \times \frac{\partial \vec{\mathbf{r}}}{\partial y}\right) = \langle 3x^2, \ 0, \ 0 \rangle \bullet \langle 2x, \ 1, \ 1 \rangle = 6x^3$$
$$\iint_{\Omega} \vec{\mathbf{F}} \bullet \vec{\mathbf{n}} \, dS = \iint_{\mathcal{D}} 6x^3 \, dy \, dx = \int_0^1 \int_0^{1-x^2} 6x^3 \, dy \, dx = \frac{1}{2}$$

