Divergence of a Vector Field
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Let M (t) denote mass inside the cube at time t.
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Let p be the density (in kilograms per meter?) at
location (x,y, z) at time ¢ seconds. If V' denotes the
interior of the solid then
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If vol(S) ~ 0 then the mass is approximated by:

M(t):///vpdep///V dV = pvol(V)



M(t) =~ pvol(V)

Therefore, the flux is approximated by:
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This approximation improves as vol(V) — 0
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In the limit,
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This is the divergence of the vector field F.



Partial Derivative Formula for div F

Recall that the derivative of f(x) is given by:
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where the approximation improves as h — 0



We can do exactly the same sort of thing for partial
derivatives. If f = f(x,y, 2) then

f(x—i_%? Y, Z)—f<ilf—%, Y, Z) Naf
Az T Ox

where the error in approximation — 0 as Az — 0



Consider the flux through the following cube:




On the front portion, n=i
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If this is a small cube, then the flux through the front
may be approximated at (x + %, v, z)
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Approximation of the flux through the front 5.
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Next, approximate the flux through the back S5
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Flux through the back:
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Total approximate flux through the front and back:
(Fl (ZIJ—I—%, Y, Z) _Fl (.Z'—%, Y, Z))AyAZ



Total approximate flux through the front and back:
(F1 (:1:+ %, v, z) — I (:L' — %, Y, z)) Ay Az
This is equal to:
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Total approximate flux through the front and back:
(F1 (:1:+ %, v, z) — I (:L' — %, Y, z)) Ay Az
This is equal to:
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This is approximately equal to:
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Flux approximation through the front and back:

oF;



Flux approximation through the front and back:
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Through left and right sides:

OF,
——Vol
75 Vol(V)

Through top and bottom:

0F3



If we combine these quantities, we get the approxi-
mation of the flux through the entire surface S sur-
rounding the cube:

oF, O0Fy, OF;3
~ 1
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If we combine these quantities, we get the approxi-
mation of the flux through the entire surface S sur-
rounding the cube:

OF, O0Fy; OFjs
~ 1
g ( 5 + 5y + 9, )Vo (V)

The approximation becomes better and better as the
volume shrinks to O.
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Example:

Let F = (zy, 2%sinz, e*z).

=y Fy, = 2% sinx Fs =e*x
NG, 9, 0
div F = %(xy)—l— 3y (2% sinz) + 5, (e*z) =y+e‘x









Gauss’s Law for Magnetism:
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Let vol(V) — 0
VeB=0






