Line Integrals - More Review

Dr. Elliott Jacobs

$$\vec{\mathbf{F}} = \langle y - x, \ z - y, \ x - z \rangle$$

$$\vec{\mathbf{F}} = \langle y - x, \ z - y, \ x - z \rangle$$

$$\int_{C} \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$$

Example:

Let $\vec{\mathbf{F}} = \langle y-x,\ z-y,\ x-z \rangle$. Integrate this vector field over the straight line segment L connecting (0,0,1) to (1,2,2).

Example:

Let $\vec{\mathbf{F}} = \langle y - x, z - y, x - z \rangle$. Integrate this vector field over the straight line segment L connecting (0,0,1) to (1,2,2). The straight line L can be described by the equation:

$$\vec{\mathbf{r}} = \vec{\mathbf{r}}_0 + t\vec{\mathbf{v}}$$

$$\vec{\mathbf{r}} = \langle 0, 0, 1 \rangle + t \langle 1, 2, 1 \rangle = \langle t, 2t, 1 + t \rangle$$
 for $0 \le t \le 1$

At any point on this line, $\vec{\mathbf{F}}$ is given by:

$$\vec{\mathbf{F}} = \langle y - x, \ z - y, \ x - z \rangle = \langle t, \ 1 - t, \ -1 \rangle$$

$$\vec{\mathbf{r}} = \langle x, y, z \rangle = \langle t, 2t, 1+t \rangle$$

The vector $d\vec{\mathbf{r}}$ is given by:

$$d\vec{\mathbf{r}} = \frac{d\vec{\mathbf{r}}}{dt} dt = \langle 1, 2, 1 \rangle dt$$

 $\vec{\mathbf{F}} \bullet d\vec{\mathbf{r}} = \langle t, 1-t, -1 \rangle \bullet \langle 1, 2, 1 \rangle dt = (t+2(1-t)-1) dt = (1-t) dt$ The line integral is therefore equal to:

$$\int_{L} \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}} = \int_{0}^{1} (1 - t) dt = \frac{1}{2}$$

Alternate Solution:

$$d\vec{\mathbf{r}} = \frac{d\vec{\mathbf{r}}}{dt} dt = \left\langle \frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt} \right\rangle dt = \left\langle dx, dy, dz \right\rangle$$

If $\vec{\mathbf{F}} = \langle F_1, F_2, F_3 \rangle$ then $\vec{\mathbf{F}} \bullet d\vec{\mathbf{r}} = F_1 dx + F_2 dy + F_3 dz$ and so the line integral can be written as:

$$\int_{L} \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}} = \int_{L} F_1 dx + F_2 dy + F_3 dz$$

$$\vec{\mathbf{r}} = \langle x, y, z \rangle = \langle t, 2t, 1+t \rangle$$

$$\int_{L} \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \int_{L} (y-x) \, dx + (z-y) \, dy + (x-z) \, dz$$

Since x = t, y = 2t and z = 1 + t, we have:

$$y = 2x \qquad z = 1 + x$$

$$y = 2x z = 1 + x$$

$$\int_{L} \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \int_{L} (y - x) \, dx + (z - y) \, dy + (x - z) \, dz$$

$$= \int_{0}^{1} (2x - x) \, dx + ((1 + x) - 2x) \, 2 \, dx + (x - (1 + x)) \, dx$$

$$= \int_{0}^{1} (1 - x) \, dx = \frac{1}{2}$$

Change the path.

Let L_1 denote the straight line segment from (0,0,1) to (1,2,1) and L_2 denote the straight line segment from (1,2,1) to (1,2,2) and let L_3 be the combined path along L_1 followed by L_2 .

The work done along the combined path L_3 is the sum of the work done along L_1 and the work done along L_2 .

$$\int_{L_3} \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}} = \int_{L_1} \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}} + \int_{L_2} \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}}$$

Along L_1 , y = 2x and z = 1 so dy = 2 dx and dz = 0.

$$(y-x) dx + (z-y) dy = (2x-x) dx + (1-2x) \cdot 2 dx = (2-3x) dx$$

$$\int_{L_1} \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}} = \int_{L_1} (y - x) \, dx + (z - y) \, dy = \int_0^1 (2 - 3x) \, dx = \frac{1}{2}$$

$$\vec{\mathbf{F}} \bullet d\vec{\mathbf{r}} = F_1 \, dx + F_2 \, dy + F_3 \, dz$$

Along L_2 , x = 1 and y = 2 at every point so dx = dy = 0.

$$\int_{L_2} \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}} = \int_{L_2} (x - z) \, dz = \int_1^2 (1 - z) \, dz = -\frac{1}{2}$$

$$\int_{L_3} \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}} = \int_{L_1} \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}} + \int_{L_2} \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}} = \frac{1}{2} - \frac{1}{2} = 0$$

For $\vec{\mathbf{F}} = \langle y - x, x - y, x - z \rangle$, changing the path between the initial and final points changed the value of the line integral.

The integral is said to be path dependent and $\vec{\mathbf{F}}$ is called a nonconservative vector field.

Example:

Let C_1 be the path from (2,0) to (0,1) along the upper portion of the ellipse $\frac{x^2}{4} + y^2 = 1$.

$$\vec{\mathbf{F}} = \langle -x + y, \ x - 2y \rangle$$

Calculate the line integral:

$$\int_{C_1} \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}}$$

$$\int_{C_1} \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}} = \int_{C_1} F_1 dx + F_2 dy + F_3 dz$$

If the path is in the xy plane then dz = 0

$$\int_{C_1} \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}} = \int_{C_1} F_1 \, dx + F_2 \, dy$$

On this elliptical path, $\frac{x^2}{4} + y^2 = 1$, we can solve for y

$$y = \frac{1}{2}\sqrt{4-x^2}$$
 $dy = \frac{-x}{2\sqrt{4-x^2}} dx$

$$\vec{\mathbf{F}} \bullet d\vec{\mathbf{r}} = (-x+y) \, dx + (x-2y) \, dy$$

$$= (-x+\frac{1}{2}\sqrt{4-x^2}) \, dx + (x-\sqrt{4-x^2}) \left(\frac{-x}{2\sqrt{4-x^2}}\right) \, dx$$

$$= -\frac{x}{2} \, dx + \frac{2-x^2}{\sqrt{4-x^2}} \, dx$$

We must start at x = 2 and end up at x = 0 if we want to integrate in the direction specified.

$$\int_{C_1} \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}} = -\int_2^0 \frac{x}{2} \, dx + \int_2^0 \frac{2 - x^2}{\sqrt{4 - x^2}} \, dx = 1 - \int_0^2 \frac{2 - x^2}{\sqrt{4 - x^2}} \, dx$$

We must start at x = 2 and end up at x = 0 if we want to integrate in the direction specified.

$$\int_{C_1} \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}} = -\int_2^0 \frac{x}{2} \, dx + \int_2^0 \frac{2 - x^2}{\sqrt{4 - x^2}} \, dx = 1 - \int_0^2 \frac{2 - x^2}{\sqrt{4 - x^2}} \, dx$$

Use trigonometric substitution:

$$\int_{C_1} \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}} = 1$$

Alternate method: use the equations $x = 2\cos t$ $y = \sin t$

$$\int_{C_1} \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \int_{C_1} (-x+y) \, dx + (x-2y) \, dy$$

$$= \int_0^{\pi/2} (-2\cos t + \sin t)(-2\sin t \, dt) + (2\cos t - 2\sin t)(\cos t \, dt)$$

$$= \int_0^{\pi/2} (2\sin t \cos t + 2(\cos^2 t - \sin^2 t)) \, dt$$

$$= \int_0^{\pi/2} (\sin 2t + 2\cos 2t) \, dt = 1$$

Let C_2 be the elliptical path along the other three quarters of the ellipse.

To traverse path C_2 , we simply vary t from 2π to $\frac{\pi}{2}$.

$$\int_{C_2} \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \int_{2\pi}^{\pi/2} (\sin 2t + 2\cos 2t) \, dt = 1$$

$$\int_{C_1} \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}} = \int_{C_2} \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}}$$

$$\int_{C_1} \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}} = \int_{C_2} \vec{\mathbf{F}} \bullet d\vec{\mathbf{r}}$$

Does this mean that the integral of $\vec{\mathbf{F}}$ from (2,0) to (0,1) is path independent? What if there is some other path, call it C_3 from (2,0) to (0,1) where the answer for $\int_{C_3} \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$ comes out differently?

