Closed Loop Integrals and V x F

Dr. Elliott Jacobs
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If F is conservative, it’s line integral between two
points P and Q is path independent
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If the path C' is a closed loop then P = Q and the
integral is 0.
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Let C'; and (5 be two different paths connecting P
and Q




If we reverse direction along path C5, we get a closed
loop C.
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Thus, line integrals of F are path independent if and
only if all closed loop of F are O.



Application to Fluids

In fluid dynamics, §C F e df is called the circulation
of the vector field







If v is the velocity vector field of an ideal fluid then
the circulation is zero.
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Circulation Per Unit Area
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The circulation per unit area is called the circulation
density. To find this around one point, take a small
region around this point and integrate around the

boundary.



Keep making the area smaller. The limit is the cir-
culation per unit area at a point.
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There is a formula for this limit in terms of the par-
tial derivatives of the coordinates of F



Some preliminaries:
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Some preliminaries:
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We can approximate the area under a curve by tak-
ing the height in the middle and multiplying by the
length at the base.




The approximation improves when h is small.
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Let C be a closed rectangular loop in the zy plane.
The height of this rectangle is Ay and the base is
Ax. There is a point (x,y) in the center of this loop.
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Coordinates of the 4 corners of this rectangle:
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Let’s start with path C;
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Let’s start with path C;
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Next, we repeat this argument for paths C5 and Cy
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The error in this approximation goes to 0 as Ax and
Ay go to 0.




lim  — ]{F.df—@—@
Area—so Atea - Ox oy

So, the significance of the expression:
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is that it represents the circulation density at (x,y)
in a plane parallel to the xy plane.



We could have taken our region to be a rectangle
parallel to the yz plane

lm  — %Fodf—%—@
Area—o Area Oy 0z




i
V xF = 86:1:
F1
9 9,
— | Oy 0z | —
F5  Fj
[ OF3 B OFs
— \ dy 0z

o |, 9
e[
B OF}

0z

o)




Circulation density at a point in the yz plane:



Circulation density at a point in the xz plane:



Let n be the unit normal vector to a closed loop in
any plane.



(V x F) e 1i is the circulation density in the plane
perpendicular to n
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This is maximized with 8 = 0 in which case:
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Particle orbiting in a circle of radius a with an an-
gular velocity of w
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