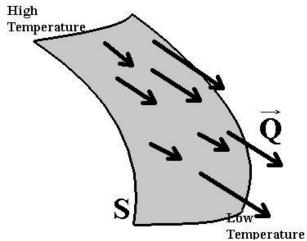
Application of Divergence Theorem The Heat Equation

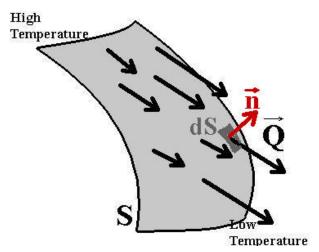
Dr. Elliott Jacobs

Let $\vec{\mathbf{Q}}$ denote the heat flow vector



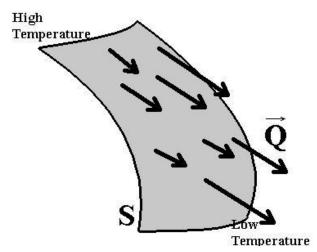
$$|\vec{\mathbf{Q}}| = \mathrm{cal/sec/m}^2$$

Let $\vec{\mathbf{Q}}$ denote the heat flow vector



 $\vec{\mathbf{Q}}\bullet\vec{\mathbf{n}}\,dS$ is cal/sec of heat flowing through a section of surface of area dS

Let $\vec{\mathbf{Q}}$ denote the heat flow vector

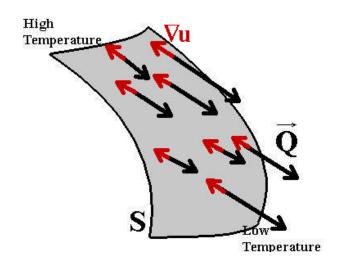


 $H = \iint_S \vec{\mathbf{Q}} \cdot \vec{\mathbf{n}} \, dS$ is cal/sec of heat flowing through the entire surface S

Let u be the temperature at point (x, y, z) at time t

$$u = u(x, y, z, t)$$

The temperature gradient points in the direction of increasing temperature



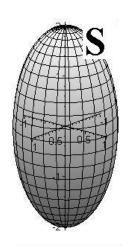
Fourier's Law:

$$\vec{\mathbf{Q}} = -k\nabla u$$

Fourier's Law:

$$\vec{\mathbf{Q}} = -k\nabla u$$

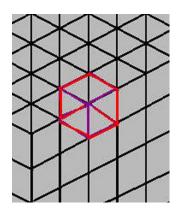
$$H = \iint_{S} \vec{\mathbf{Q}} \bullet \vec{\mathbf{n}} \, dS = -k \iint_{S} \nabla u \bullet \vec{\mathbf{n}} \, dS$$



In an interior section of volume ΔV , the heat gain is proportional to the mass and the change in temperature

Mass Of Section = $\rho \Delta V$

Heat Gain = $c \cdot \Delta u \cdot \rho \Delta V$

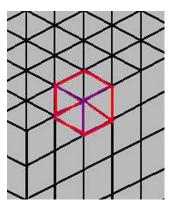


Heat Loss = $-c\rho\Delta u\Delta V$

Rate of Heat Loss =
$$-c\rho \frac{\Delta u}{\Delta t} \Delta V \approx -c\rho \frac{\partial u}{\partial t} \Delta V$$

This is the rate that the heat is leaving one small

interior section



Total rate that the heat is leaving the solid is:

$$H = \iiint_V -c\rho \frac{\partial u}{\partial t} \, dV$$

Total rate that the heat is leaving the solid is:

$$H = \iiint_{V} -c\rho \frac{\partial u}{\partial t} \, dV$$

We also know that this heat loss is also given by:

$$H = -k \iint_{S} \nabla u \bullet \vec{\mathbf{n}} \, dS$$

$$-k \iint_{S} \nabla u \bullet \vec{\mathbf{n}} \, dS = \iiint_{V} -c\rho \frac{\partial u}{\partial t} \, dV$$

$$-k \iint_{S} \nabla u \bullet \vec{\mathbf{n}} \, dS = \iiint_{V} -c\rho \frac{\partial u}{\partial t} \, dV$$
$$-k \iiint_{V} \nabla \bullet (\nabla u) \, dV = \iiint_{V} -c\rho \frac{\partial u}{\partial t} \, dv$$

$$-k \iint_{S} \nabla u \bullet \vec{\mathbf{n}} \, dS = \iiint_{V} -c\rho \frac{\partial u}{\partial t} \, dV$$
$$-k \iiint_{V} \nabla \bullet (\nabla u) \, dV = \iiint_{V} -c\rho \frac{\partial u}{\partial t} \, dv$$
$$-k \iiint_{V} \nabla^{2} u \, dV = \iiint_{V} -c\rho \frac{\partial u}{\partial t} \, dv$$

$$-k \iint_{S} \nabla u \bullet \vec{\mathbf{n}} \, dS = \iiint_{V} -c\rho \frac{\partial u}{\partial t} \, dV$$

$$-k \iiint_{V} \nabla \bullet (\nabla u) \, dV = \iiint_{V} -c\rho \frac{\partial u}{\partial t} \, dv$$

$$-k \iiint_{V} \nabla^{2} u \, dV = \iiint_{V} -c\rho \frac{\partial u}{\partial t} \, dv$$

$$0 = \iiint_{V} \left(k \nabla^{2} u - c\rho \frac{\partial u}{\partial t} \right) \, dV$$

$$0 = \iiint_V \left(k \nabla^2 u - c\rho \frac{\partial u}{\partial t} \right) dV$$

If this is true for all three dimensional regions V then at all points:

$$0 = k\nabla^2 u - c\rho \frac{\partial u}{\partial t}$$

$$\frac{\partial u}{\partial t} = \frac{k}{c\rho} \nabla^2 u$$

$$\frac{\partial u}{\partial t} = \frac{k}{c\rho} \nabla^2 u$$

Let
$$\alpha = \sqrt{\frac{k}{c\rho}}$$

$$\frac{\partial u}{\partial t} = \alpha^2 \nabla^2 u$$

The Heat Equation

$$\frac{\partial u}{\partial t} = \alpha^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right)$$

In the special case where u = u(x, t), the heat equation becomes:

$$\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$$

Joseph Fourier

