Application of Divergence Theorem
The Heat Equation
Dr. Elliott Jacobs
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Let Q denote the heat flow vector
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Q e 11 dS is cal/sec of heat flowing through a section
of surface of area dS



Let Q denote the heat flow vector
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H= [ QenidsS is cal/sec of heat flowing through
the entire surface S



Let u be the temperature at point (x,y, z) at time ¢
u=u(x,y,z,t)

The temperature gradient points in the direction of
increasing temperature
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Fourier’s Law:

C) = —kVu



Fourier’s Law:




In an interior section of volume AV, the heat gain
is proportional to the mass and the change in tem-

perature
Mass Of Section = p AV

Heat Gain =c- Au-p AV
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Heat Loss = —cpAuAV
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Rate of Heat Loss = —cp— A7 AV ~ —cp— 5 AV

This is the rate that the heat is leaving one small
interior section
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Total rate that the heat is leaving the solid is:
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Total rate that the heat is leaving the solid is:
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We also know that this heat loss is also given by:
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If this is true for all three dimensional regions V' then
at all points:
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The Heat Equation
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In the special case where u = u(z,t), the heat equa-
tion becomes:
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